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Abstract

This thesis explores the use of Large Language Models for classifying and transferring

between German-language proficiency levels. By employing prompt engineering and

fine-tuning techniques on the LLaMA-3-8B-Instruct model, I achieved significant improve-

ments in CEFR classification accuracy compared to previous methods. The thesis also

investigates the challenging task of transferring texts between CEFR levels while preserv-

ing content. My findings demonstrate the potential of LLMs in language assessment and

text adaptation, outperforming traditional approaches. I also identify limitations and

areas for future research, including the need for larger datasets and refined evaluation

metrics for text transfer tasks.
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1 Introduction

In the rapidly evolving field of artificial intelligence, Large Language Models (LLMs)

such as GPT, LLaMA, Qwen, and Gemini have demonstrated remarkable capabilities

in processing and generating human-like text. Despite their widespread success, the

application of these models in language proficiency classification, particularly for German,

remains limited.

1.1 Motivation

While LLMs are predominantly used for generating human-like text, their potential

in language proficiency classification and text adaptation has not been fully explored.

There is a notable lack of comprehensive solutions for classifying and adapting texts

according to the Common European Framework of Reference for Languages (CEFR)

levels, especially for German. The predominance of English in training datasets has led

to models favoring English grammar and sentence structures, resulting in suboptimal

performance when applied to other languages, including German.

This thesis aims to investigate the potential of LLMs in classifying and transferring

between German language proficiency levels as defined by the CEFR. The focus will

be particularly on Transformer-based models originally designed for natural language

processing tasks. Although some preexisting solutions for German exist, they are limited

in scope and performance, often requiring substantial manual work during training.

Moreover, these solutions lack the capability to transfer between language proficiency

levels.

Given the outstanding capabilities of LLMs in processing and generating human-like

text, I theorize that they should excel at the task of language proficiency classification

and transformation. This thesis will investigate the potential of LLMs in this regard,

addressing the current gaps in transformation and potential in improving the classification

of German texts by CEFR levels.
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1 Introduction

1.2 Research Questions

The primary research question guiding this thesis is:

"How can Large Language Models (LLMs) be Effectively Used for Classifying

and Transferring Between Language Proficiency Levels in German?"

To address this question, the following sub-questions will be explored:

1. How to objectively evaluate the performance of LLMs in classifying and transferring

German texts by CEFR levels?

2. How can prompt engineering and fine-tuning techniques be used to guide and

optimize LLMs for the classification task?

3. Which LLM is best suited for the classification and transfer tasks?

4. How can fine-tuning be used to accomplish the transfer task?

1.3 Overview

The following chapter establishes the foundation of the research by presenting a back-

ground on LLMs, the CEFR framework and current approaches to language proficiency

classification and text adaptation. Chapter 3 outlines the methodology used in this thesis,

detailing the dataset creation, benchmark design, model selection, data preparation

and fine-tuning process. In Chapter 4 I present an analysis of the benchmarks results,

including both quantitative performance metrics and qualitative assessments of the LLMs’

capabilities in classifying and adapting German texts. Chapter 5, the results, offers a

critical discussion of the findings, exploring their implications for language education and

assessment, while also addressing the limitations of the thesis and suggesting potential

improving to the methodologies used. Finally in Chapter 6, the conclusion, I summarize

the key findings of the research and propose directions for future thesis in the field of

language proficiency classification and text adaptation using LLMs.

1.4 Git Repository

The code and resources used in this thesis are available on GitHub at

https://github.com/EliasAhlers/BachelorThesis
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2 Background

In this chapter I am going to establish the foundation by giving a brief overview of LLMs,

the CEFR framework and the challenges in language proficiency classification and text

adaptation. I will also discuss existing solutions and their limitations. This chapter will

provide the necessary background information to understand the research questions and

methodology presented in the following chapters.

2.1 Large Language Models

LLMs are a subset of machine learning models that leverage complex neural networks

trained on vast amounts of text data to process and generate human-like text. Most newer

and advanced models are based on the Transformer architecture (Vaswani, 2017) which

has shown remarkable capabilities in natural language processing tasks. Transformers are

particularly well-suited for language modeling tasks due to its self-attention mechanism,

which allows the model to focus on different parts of the input sequence when generating

the output.

Any   sufficiently   advanced   technology   is   ind istinguish able   from   magic

8780 40044 11084 5557 374 1280 89747 11084 5557 11204

Figure 2.1: Example tokenization of a sentence for the LLaMA3 tokenizer (Belladore, 2024)

This process begins with tokenization, where input text is divided into smaller units

called tokens (see Figure 2.1). Tokens are then transformed into numerical vectors

(embeddings) that encapsulate semantic meaning. Subsequently, they are processed

through the core of the transformer model: multiple layers of self-attention mechanisms

and feed-forward neural networks. Within the self-attention layers, the model learns to

identify and weigh relevant relationships between all tokens in the sequence. Following

this, feed-forward layers further refine this information, effectively storing the model’s

knowledge. The model then decodes this processed information to generate output text.

This decoding runs sequentially, with each new token being influenced by all preceding
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2 Background

tokens, until an end-of-sequence token is produced. As a result of this iterative process,

the model can generate coherent and contextually relevant text.

LLMs can be categorized into encoder-only (e.g. BERT (Devlin et al., 2018)), decoder-

only (e.g. GPT, LLaMA etc.. (Brown et al., 2020; MetaAI, 2024)) and encoder-decoder

models (e.g. T5 (Raffel et al., 2019)), each with its own strengths and weaknesses.

Currently most advanced models are based on the decoder-only architecture. For a way

more thorough explanation of LLMs and overview I recommend the reader to check out

Zhao et al. (2023).

LLMs have shown to be capable of generating coherent and contextually relevant text,

making them suitable for a wide range of applications such as text generation, transla-

tion and summarization. But they have also some drawbacks and limitations: Due to

their large size and complexity, they require significant computational resources during

inference and training. Moreover, they are very sensitive to the quality and quantity

of the training data, which can lead to bad quality responses or even worse, biased or

harmful outputs.

2.2 Fine-tuning

Fine-tuning is a technique for adapting a model trained on a broad, generalized dataset.

It involves further training the model on a smaller, task-specific dataset, leveraging

the model’s general knowledge. Fine-tuning leads to small adjustments in the model’s

weights, which allows it to adapt to the specific task or domain resulting in improved

performance. To make fine-tuning even more efficient, there are advanced techniques

like low rank adaptation - often referred to as LoRa (Hu et al., 2021). It involves

adding trainable rank decomposition matrices to the model’s existing weights. This

approach significantly reduces the number of trainable parameters, making fine-tuning

more memory-efficient and faster, while still achieving comparable performance than

traditional fine-tuning.

2.3 Language Proficiency and CEFR

Language proficiency describes the ability of an individual to use a language effectively

and accurately in a variety of contexts and situations. The Common European Frame-

work of Reference for Languages (CEFR) is a widely used framework that provides a

standardized scale for assessing language proficiency. It divides language proficiency
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2.4 Challenges in Language Proficiency Classification

into six levels, ranging from A1 (beginner), A2 (elementary), B1 (intermediate), B2

(upper-intermediate), C1 (advanced) and C2 (proficient). The CEFR is used in language

education and assessment to evaluate and certify language proficiency, and it provides

a common reference point for language learners, teachers and institutions. There are

rules and guidelines for each level, which describe the skills that learners should have at

each level. For example, at the A1 level, learners should be able to understand and use

familiar everyday expressions and basic phrases, while at the C2 level, learners should

be able to understand complex texts and communicate fluently and spontaneously in a

variety of contexts.

2.4 Challenges in Language Proficiency Classification

Language proficiency classification is a challenging task, especially for traditional NLP

techniques, due to the complexity and ambiguity of human language. There are no

explicit rules that can be followed by a traditional algorithm to determine the proficiency

level of a text, and the classification is often subjective and context-dependent. Moreover,

the classification of language proficiency is not a binary decision, but rather a continuous

scale, which makes it difficult to define clear boundaries between the different levels.

This is further complicated by the fact that language proficiency is not only determined

by the vocabulary and grammar used in a text, but also by the context, style and tone.

For example, a text that uses simple vocabulary and grammar may still be classified as

advanced if it discusses complex topics or uses sophisticated arguments. Traditional

approaches to language proficiency classification rely on manual annotation and expert

judgment, which are time-consuming and expensive. They also suffer from subjectivity

and inconsistency, as different annotators may have different opinions on the proficiency

level of a text. Here LLMs can provide a solution as they are designed to work with

natural language text and have shown to be capable of understanding and working with

the complexity and ambiguity of human language.

2.5 Challenges in Text Transformation

Text adaptation is the process of modifying a text to make it more suitable for a specific

audience or purpose. In the context of language proficiency, text adaptation involves

modifying a text to match the proficiency level of the reader. This can include simplifying

the vocabulary and grammar, rephrasing complex sentences and adding explanations

or examples to make the text more understandable. Transferring is an even more
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challenging task than language proficiency classification, as it requires not only an

understanding of the text itself, but also the ability to generate new text that is coherent

and contextually relevant while matching the target proficiency level. Problems like

this fit LLMs capabilities even more as they are designed to generate text and have

shown to be capable of adapting text to different styles and contexts. Transformers are

particularly well-suited for this task, as they were originally designed for translation

between languages (Vaswani, 2017) and translation of proficiency levels can be seen as

a subset of that task.

2.6 Existing Solutions and their Limitations

There are some approaches to CEFR classification of German texts. Notably there is the

work of Szuügyi et al. (2019), Vajjala & Rama (2018) and extending on that work, Caines

& Buttery (2020). These approaches all use traditional NLP techniques and machine

learning algorithms to classify German (and other languages) texts according to the

CEFR levels. They rely on linguistic features such as vocabulary, grammar and syntax to

determine the proficiency level of a text. While these approaches have shown promising

results, they have some limitations. They are often based on hand-crafted features and

rules, which are time-consuming and expensive to create and maintain. Additionally

due to their architecture and approach, these methods can not be used to adapt texts to

different proficiency levels which is an integral part of this thesis.
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3 Methods

This chapter outlines the methodology used to evaluate the performance of LLMs in

classifying and transferring German texts by CEFR levels. It includes the dataset creation,

benchmark design, model selection, data preparation and the fine-tuning process.

3.1 Classification Dataset

An integral part of any machine learning project is the dataset. Creating a dataset with

German CEFR levels was challenging because there are no publicly available datasets

with this information for all levels. I had to create a dataset from scratch, combining

several existing datasets and using synthetic data generation to create a (balanced)

dataset. It consists of about 1,500 texts, each ranging from 500 to 3,000 words. The texts

are from different domains, such as simple texts, essays, summaries and more. There are

all 6 CEFR levels in the dataset, ranging from A1 to C2. Additional preprocessing steps

were taken to ensure the quality of the dataset, such as removing duplicates, removing

non-valid characters and more.

3.1.1 Creation of the Classification Dataset

The classification dataset was created by integrating multiple existing datasets along

with synthetic data generation to ensure a balanced composition. The FALKO Corpus

(Reznicek et al., 2010) and MERLIN Corpus (Boyd et al., 2014) used in this thesis are

available under CC BY 3.0 and CC BY-SA 4.0 licenses respectively.

Falko Corpus

A significant source utilized was the Falko corpus (Reznicek et al., 2010) collected and

annotated at the Humbolt University Berlin. The corpus was designed to facilitate re-

search in corpus linguistics by providing a collection of texts authored by both advanced
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3 Methods

foreign learners of German and native speakers, collected under controlled conditions

and annotated for various linguistic features. From this corpus, the EssayL2, SummaryL1

and SummaryL2 subcorpora were selected due to them containing the necessary data.

The EssayL2 subcorpora consists of argumentative essays written by foreign learn-

ers of German with a CEFR level between B2 and C2. Topics include feminism, financial

discussions and crime. All essays of the subcorpora were written under controlled con-

ditions, with the learners having 90 minutes to write each essay. Each essay was then

annotated with several metadata points such as the author’s age, gender etc... Relevant

to me was only the C-test score, which is an integer ranging from 0 to 100 to measure

the author’s German proficiency. The Falko authors gave a mapping to assign each C-test

score to a CEFR level which I used to assign the CEFR level to each essay - see Table

3.1.

Score Range CEFR Level

60 - 79 B2
80 - 89 C1
90 - 100 C2

Table 3.1: Mapping of C-Test Scores to CEFR Levels

The SummaryL1 and SummaryL2 subcorporas consist of summaries of academic texts

written by native speakers of German. The conditions were very similar to the EssayL2

subcorpora, with the learners having 90 minutes to write each summary. While the Sum-

maryL1 subcorpus contains summaries written by native speakers and thus processed as

C2 samples for my dataset, the SummaryL2 subcorpus includes summaries written by

learners of German as a second language.

This dataset source was rather important as it contains a lot of native speaker texts,

which are crucial for the model to understand the C2 level.

MERLIN Corpus

The second primary textual source was the MERLIN corpus (Boyd et al., 2014), a learner

corpus designed to illustrate the CEFR with authentic learner data. It includes texts

in three languages: Italian, Czech and German. There are entries covering all 6 CEFR

levels with a strong focus on A2,B1 and B2 levels. Offering a diverse range of text types,

including essays, summaries and other forms, the corpus is perfect for this thesis. These

texts were collected as part of a standardized language test, which ensures the texts have
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3.1 Classification Dataset

great consistency and quality. All samples were annotated with CEFR levels by language

experts, which guarantees the quality and accuracy of the labels. Due to that I could

directly use the CEFR labeled texts provided by the corpus for my dataset.

Synthetic Data Generation

To address the scarcity of A1-level texts in the available sources, a synthetic data genera-

tion method was employed to enable having a dataset to evaluate across all CEFR levels.

I chose to use the Claude 3.5 Sonnet model (Anthropic, 2024), an advanced LLM devel-

oped by Anthropic due to its versatility in generating high-quality texts, large knowledge

base and good prompt adherence (Huang et al., 2024). The prompt engineering process

consisted of several iterations to achieve the desired sample output. Initial attempts

resulted in texts that showed a very high similarity to early primary school texts, which

was not the desired outcome as I wanted texts in diverse topics to avoid dataset bias.

Models would have associated the levels with the topics rather than the complexity of

the text samples. To counteract these issues, I adjusted the prompt to avoid typical topics

that the model would fall back to. Additionally the model was supplied a definition of

the A1 level by the Goethe Institute to guide the model and prevent it from generating

texts with higher complexity (GoetheInstitut). Also I settled on German as the language

for the prompt as it showed better results than an English prompt.

The final prompt used for the synthetic data generation was:

Bitte generiere Texte mit dem CEFR Niveau A1. Diese sollten länger (Circa
600 Wörter) sein. Versuche Themen zu finden, welche nicht mit Schule/Kindheit
in Verbindung stehen. Es sollte sich um Texte für Deutsch Sprachler mit dem
Level A1 handeln.
Hier ist eine Definition des A1 Levels:
Kann vertraute, alltägliche Ausdrücke und ganz einfache Sätze verstehen und
verwenden, die auf die Befriedigung konkreter Bedürfnisse zielen. Kann sich und
andere vorstellen und anderen Leuten Fragen zu ihrer Person stellen – z. B. wo
sie wohnen, welche Leute sie kennen oder welche Dinge sie haben – und kann
auf Fragen dieser Art Antwort geben. Kann sich auf einfache Art verständigen,
wenn die Gesprächspartner langsam und deutlich sprechen und bereit sind zu
helfen.

Prompt 3.1: Final German Prompt for Synthetic Data Generation using definition by GoetheInsti-
tut

Using this I generated a total of 122 texts, which each undergoing a manual review to

ensure quality and relevance before being included in the dataset.
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While synthetic data generation proved effective for the A1 level, it was deemed un-

suitable for the higher CEFR levels due to the complexity of the levels and the model’s

inability to reliably generate texts of that complexity. I am going to address this problem

in the second part of my thesis (Section 3.5). There is also a risk of dataset bias, as the

model could have generated texts with a schema that is not directly recognizable by

humans. Regardless, this should not pose a problem in this case as the MERLIN dataset

also provides A1 samples which were also used and thus the synthetic data is only a part

of the dataset, not the whole dataset.

A detailed analysis of the dataset composition, distribution and word count across

different CEFR levels is provided in the results chapter in Section 4.1.

The transformation dataset for the transfer task is addressed later, as it relies on the

fine-tuned classification model introduced in the following subsections. For details see

Subsection 3.5.1.

Source A1 A2 B1 B2 C1 C2

Falko EssayL2 83 84 81

Falko SummaryL1 58

Falko SummaryL2 53 53

MERLIN 57 306 331 293 42 4

Synthetic 122

Sum (1,567) 179 306 331 376 179 196

Table 3.2: Data Distribution Across Different Levels

10



3.2 Evaluation Framework and Benchmark Design

3.2 Evaluation Framework and Benchmark Design

3.2.1 Definition of Evaluation Metrics

Classification Task

Defining the evaluation metrics for the classification task is an important step to ensure

the ability to judge the performance of the model and compare it to other models. This

allows us to objectively measure the performance increase and the effectiveness of the

prompts. As this task is a very simple classification task (only 6 possible classes), I can use

the standard evaluation metrics for classification tasks, consisting of accuracy, precision,

recall and F1 score. See Table 3.3 for a detailed explanation of the metrics.

Metric Description Formula

Accuracy Ratio of correctly classified samples
to the total number of samples.
Provides an overall measure of the
model’s performance across all
classes. Can be misleading in cases
of imbalanced datasets.

Number of Correctly Classified Samples
Total Number of Samples

Precision Specific to each class. Ratio of
correctly classified samples to the
total number of samples classified
as that class. Measures the model’s
ability not to label a sample as a
certain class when it is not.

True Positives
True Positives+False Positives

Recall Specific to each class. Ratio of
correctly classified samples to the
total number of samples that are
actually in that class. Measures the
model’s ability to find all the
samples that belong to a certain
class.

True Positives
True Positives+False Negatives

F1 Score Balances precision and recall,
allowing comparison of models
based on a single value.

2 · Precision·Recall
Precision+Recall

Table 3.3: Common Evaluation Metrics for Classification Tasks

Additionally to these standard metrics, I also introduced another metric called group
accuracy. As CEFR classifications are inherently subjective due to their language origin
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(Siddhant et al., 2020) and the boundaries between levels are not always clear, it is

possible, that different experts classify the same text differently. Therefore there could

be a situation where a text is classified as B1 but also as B2 - both classifications could be

correct. To account for this, I introduced the group accuracy metric. I define a group as a

set of two adjacent CEFR levels. For example, a group consists of A1 and A2, another

group of A2 and B1 and so on. The group accuracy is then defined as the ratio of samples

that were classified in the correct group to the total number of samples - allowing to

measure the model’s ability to classify texts in the correct group, even if the exact level is

not correct.

Transfer Task

For the transfer task, the evaluation metrics are substantially more complex. The model

is evaluated on its ability to transfer knowledge from one CEFR level to another while

retaining the content. Evaluation metrics for this task are two fold: To begin with, the

transferred text undergoes classification to determine if it matches the target CEFR level

utilizing the classification LLM. By using the classifier, I ensure a consistent and reliable

metric for evaluation. Additionally I determine the group transfer accuracy, similar to the

classification task. Secondly, the content retention is evaluated by employing a second

(foundation) LLM as a judge model. The LLM is given the original and transferred text

while being tasked to evaluate the content similarity between the two texts.

Metric Description Methodology

Transfer
accuracy

Ratio of samples where the transferred
text is classified as the target CEFR level
to the total number of samples.

Classification LLM

Group
Transfer
accuracy

Ratio of samples where the transferred
text is classified as the target CEFR level
or the adjacent CEFR level to the total
number of samples.

Classification LLM

Content
Preserva-
tion Rate

Ratio of samples where the content
similarity between the original and the
transferred text is sufficiently retained, as
evaluated by a LLM, to the total number
of samples.

Judge LLM

Table 3.4: Evaluation Metrics for Transfer Tasks
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3.2 Evaluation Framework and Benchmark Design

3.2.2 Classification Task Benchmark Design

The benchmark for the classification task is designed to evaluate the performance of the

classification LLM. In the following, I will define a run as a single evaluation cycle of the

model. For each run, a given amount of samples for each CEFR level are selected. Then,

using a base model with prompting, the samples are randomly selected from the dataset.

If a fine-tuned model is being benchmarked, the samples are selected from the validation

split of the dataset for that specific model.

For each sample, the model is tasked to classify the text. The system prompt is set to

an instruction and the sample is supplied to the model as the first user message. The

model then generates the second message, which is the classification of the text with a

limit of 2 tokens. After the model has generated all predictions, the evaluation metrics

are calculated for the whole run (accuracy and group accuracy) and each CEFR level

(precision, recall and F1). This process can be repeated multiple times to get a more

accurate representation of the model’s performance, as with a temperature > 0 the

model will generate different outputs for the same input. Final evaluation metrics are

then calculated as the average over all runs. For this thesis, I decided on a temperature

of 0 for the classification task as this guarantees consistent results. Additionally, testing

showed the models seems to perform better with a temperature of 0. This makes sense

due to the model only having to generate two tokens, which would be massively skewed

by a higher temperature. Additionally this choice also provides reproducibility, as the

results are consistent across runs.

Accompanying the benchmark, I developed a small web interface to allow for easy testing

of the model. The interface allows the user to select a model and benchmark parameters

such as the number of runs, temperature, sample size, system prompt and more. It then

automatically runs the benchmark and displays the runs in an easy to read list. For

each run the user can access a detailed view, showing the run results in a confusion

matrix and the evaluation metrics for each CEFR level. This allows for easy and fast

comparison of different models and benchmark parameters. Additionally, the interface

has some additional features such as the ability to abort runs that result in a lot of

miss-classifications in direct succession, indication an issue with the model or prompt.

13
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3.3 CEFR Classification via Prompt Engineering

3.3.1 Prompt Design Strategy

I started the prompt design process by choosing a first base model to start working with

to evaluate my prompts. This choice turned out to be the LLaMA3-8B model (MetaAI,

2024) as it is rather small and thus has fast inference times, allowing for quick testing

of prompts. Later on I chose the best performing model, see Subsection 3.3.2. The

prompt design process was iterative and consisted of several steps, each improving on

the previous one. With the end goal being to design a prompt that instructs the model to

effectively classify the CEFR level of a given text.

Basic Prompt

Initial steps involved designing a simple prompt instructing the model to classify the first

text supplied by the user in the conversation. Two parts are integral to the prompt: First

a simple description of the model’s task and secondly a list of valid responses for the

model to chose from. I decided first try to design the prompt in English, as the model was

mostly trained on English data (MetaAI, 2024) and that should lead to better instruction

adherence. Similar behavior is common in LLMs as shown by Siddhant et al. (2020). The

performance of this prompt was evaluated, with results available in the appendix 7.1.

Classify the language level of a given text according to the Common Euro-
pean Framework of Reference for Languages (CEFR). Respond with only the
corresponding CEFR level (A1, A2, B1, B2, C1 or C2).

Prompt 3.2: First English Prompt

German Zero-Shot Prompt

The evaluation of the previous prompt showed some problems. To address these short-

comings, a switch to German was made, based on two considerations:

1. First, as the classification task is designed for German texts, using a German prompt

could potentially profit from more relevant language knowledge in the model. Also

as German has the same origin as English, the languages share some similarities.

Pires et al. (2019) has shown, that LLMs can better adapt to languages, that are
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3.3 CEFR Classification via Prompt Engineering

similar to the ones they were mostly trained on. So this could potentially lead to

better results.

2. Secondly, the model had already shown good adherence to instructions, suggesting

that the problem remains in the classification task itself rather than in understand-

ing and following the prompt.

The new prompt is a direct translation of the English prompt, with minor adjustments to

ensure natural phrasing in German and a focus on the valid responses.

Bewerte die Sprachkenntnisse des bereitgestellten deutschen Textes gemäß
dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER/CEFR).
Antworte NUR mit der entsprechenden Stufe: A1, A2, B1, B2, C1 oder C2,
*keiner* Begründung

Prompt 3.3: German Zero-Shot Prompt

The effectiveness of this German prompt was assessed through comparative testing

against its English counterpart showing slight improvement in the model’s performance.

See the appendix Table 7.2 for the results.

German Few-Shot Prompt

For now all prompts were zero-shot prompts, meaning that the model was not given

any examples with desired output beforehand. To further increase performance, a

few-shot prompt was designed, where the model is given a few text samples with their

corresponding CEFR level. As shown by Brown et al. (2020), this should help the model

to better understand the task and improve its performance. The few-shot prompt can be

seen in Prompt 3.4.

For readability reasons I only included the A1 example in the prompt, the other examples

are similar in structure and content. Also note that the grammar and spelling mistakes

are intentional, as they are typical for the respective CEFR level and the sample was

taken from a real text. See the appendix at Prompt 7.1 for the full version.

This prompt incorporates an example with its corresponding class for each CEFR level.

All examples were specifically selected from samples that the model had previously

misclassified, with the aim of enhancing the model’s understanding of the task and

improving its performance.

Additional experimentation with prompting did not yield any further improvements in

accuracy. Notably, the inclusion of additional examples in the prompt did not result in
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Klassifiziere die Sprachkenntnisse des bereitgestellten deutschen Textes gemäß
dem Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER/CEFR).
Antworte NUR mit der entsprechenden Stufe: A1, A2, B1, B2, C1 oder C2,
NICHT MEHR. Gebe auch *keine* Begründung!
Hier sind jeweils Beispiele:

A1: Lieber Jens, Ich Glückwünsche dich ist Vater geworden. Wie es
deine Frau und deine Babys? Wie heißt des Babys? Brauchst du etwas hilfe?
Könntest du bitte mich anrufen? Herzlichen Grüßen Maria Meier
A2: [...]
B1: [...]
B2: [...]
C1: [...]
C2: [...]

Prompt 3.4: German Few-Shot Prompt, shortened (See Prompt 7.1 for full version)

significant improvements - in fact, it led to a slight decrease in classification accuracy.

This effect may be caused by potential overfitting, where the model becomes too closely

aligned with the specific examples provided in the prompt, potentially hampering its

ability to generalize to new, unseen texts.

3.3.2 Base Model Selection

Selection Criteria

After refining the prompt with a stand-in model I decided to evaluate different models to

find the best one. Before deciding on a model, I first had to define the selection criteria.

The most important criterion was the model’s performance on the classification task,

mainly the accuracy and group accuracy scores. Additionally the model’s parameter

count and inference time were also considered for two reasons. Firstly, a small(er) model

(<30B parameters) would allow for faster inference times, thus being more effective and

practical for real world use. Secondly, a smaller model would also be easier to fine-tune,

as it requires less computational resources.

Lastly, the model’s adherence to the prompt was also considered. For the classification

task the model needs to only respond with the CEFR level, nothing else. If the models

does not adhere to the prompt and provides additional information or argumentation, it

is considered a wrong classification and results in worse performance.

Also important was, that the model has open weights and can be fine-tuned. This criteria

includes the right license for research fine-tuning.
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3.3 CEFR Classification via Prompt Engineering

Possible Models

The following models were considered for evaluation:

Model Name Reference

Meta-LLaMA-3-8B-Instruct MetaAI (2024)

Meta-LLaMA-3-70B-Instruct MetaAI (2024)

Mistral-7B-Instruct Jiang et al. (2023)

Mixtral-8x22B-Instruct-v0.1 Jiang et al. (2023)

google/gemma-2-9b-it Gemma Team et al. (2024)

google/gemma-2-27b-it Gemma Team et al. (2024)

qwen/qwen2-7B-Instruct Yang et al. (2024)

qwen/qwen2-72B-Instruct Yang et al. (2024)

Table 3.5: Language Models Considered for Evaluation

Selected Model

After evaluating all models based on their performance, size and license, I determined

the Meta-LLaMA-3-8B-Instruct model to be the best choice for the classification task and

further fine-tuning. The selection process considered several key factors:

1. Performance: The model’s accuracy and group accuracy were evaluated on a subset

of the dataset. While specific results are presented in the Results section at 7.2, the

LLaMA-3-8B-Instruct model demonstrated competitive performance.

2. Model Size: With 8 billion parameters, this model offers a good balance between

capability and computational efficiency. This was an important consideration for

both fast inference speed and the ability to fine-tune the model effectively and

iterate quickly.

3. Open Weights: The availability of open weights was crucial for this thesis, as it

allows for fine-tuning and adaptation to the specific tasks.

4. Licensing: The model’s license permits research use and fine-tuning, which aligns

with this thesis needs.
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5. Architecture: The LLaMA-3-8B-Instruct model uses a transformer architecture

optimized for instruction following, which is well-suited for the classification and

transfer tasks.

While larger models were available, the LLaMA-3-8B-Instruct model offered the best

compromise between performance and resource requirements. The detailed performance

comparisons that led to this selection, including accuracy and group accuracy metrics for

all evaluated models can be found in the appendix at 7.2.

It is important to mention, that the model selection process has a slight bias towards

the LLaMA-3-8B-Instruct model. As the evaluation of the different models was done

on the manually refined prompt, which was designed with the LLaMA-3-8B-Instruct

model as a stand-in. This could potentially lead to a bias towards this model, as the

prompt was iteratively designed to work well with this model. It could be, that with other

prompts the results would be different and another model would be better contenders.

As the prompt showed good results with several other models as well, the bias should be

minimal but still needs to be mentioned and kept in mind.

3.4 CEFR Classification via LLM Fine-Tuning

After exploring prompting for the classification task, I moved on to fine-tuning a model

on the classification task to see if this would lead to better results. Fine-tuning involves

further training of an already pre-trained model on a dataset to adapt the model to a

specific task or domain. This will allow the model to learn patterns and features relevant

to the CEFR classification task. In this section I will discuss dataset preparation and the

process of fine-tuning itself.

Model Selection

Based on Subsection 3.3.2 I decided to fine-tune the Meta-LLaMA-3-8B-Instruct model.

This model showed the best performance on the classification task and adhered well

to the prompt. Additionally, the model has a relatively small parameter count, which

should allow for faster fine-tuning and inference times. LLaMA3 also has open weights

and is licensed for research fine-tuning (MetaAI, 2024).
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<|start_header_id|>system<|end_header_id|>Klassifiziere das Sprach-
niveau des bereitgestellten deutschen Textes gemäß dem Gemeinsamen
Europäischen Referenzrahmen für Sprachen (GER/CEFR). Antworte
NUR mit der entsprechenden Stufe: A1, A2, B1, B2, C1 oder C2, NICHT
MEHR.<|eot_id|><|start_header_id|>user<|end_header_id|>[SAMPLE]
<|eot_id|><|start_header_id|>assistant<|end_header_id|>[CORRECT
SAMPLE CLASS]<|eot|>

Prompt 3.5: Formatted Prompt Sample for Fine-Tuning

Dataset Preparation

To prepare the dataset I first randomly selected 179 samples from each CEFR level. This

was done do avoid any bias towards the center levels as these were overrepresented in

the dataset (See Table 3.2) and 179 samples is the lowest number of samples for a CEFR

level. The samples were then split into two parts:

• Training data: 154 per CEFR level to be used for fine-tuning the model

• Test data: 25 samples per CEFR level to be used for evaluation of the fine-tuned

model

All texts were formatted for the fine-tuning process. Each sample was formatted as a

single string that conforms to the LLAMA 3 input format, consisting of a system prompt,

a user message and the assistant response separated by special tokens. Special tokens are

tokens that are not part of the normal text embedding vocabulary and used to separate

the different parts of the input and indicate end of the models response. A shortened

version of the prompt used for the classification task was used as the system prompt,

removing the examples for each CEFR level as they will be implicitly learned by the

model during fine-tuning. The first user message was set to the sample to be classified by

the model. Then the assistant response was set to the correct CEFR level. See Prompt

3.5 for an example of a formatted sample.

Then all formatted samples were scrambled to avoid any problems in the training process

due to class repetition.

Fine-Tuning Process

The fine-tuning process was conducted using Unsloth, which is specifically designed for

efficient fine-tuning of LLMs. Training was carried out on an NVIDIA GPU, leveraging

PyTorch for the underlying computations. I used llama-3-8b-Instruct as the base model,
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with a maximum sequence length of 4096 tokens. The model was loaded in 16-bit

precision (float16) to achieve best computational accuracy. To ensure efficient resource

usage for the fine-tune I employed Low-rank Adaptation with a rank of 64 and a dropout

of 0.

The following hyper-parameters were used for the fine-tuning itself:

Hyperparameter Value

Learning rate 2e-4
Number of epochs 5
Batch size 1
Gradient accumulation steps 1
Warmup steps 400
Weight decay 0.001
Learning rate scheduler Linear

Table 3.6: Hyperparameter Used for Fine-tuning

The learning rate of 2e-4 was chosen as it is recommended by the Unsloth authors

as a good starting point for fine-tuning LLMs, balancing between learning speed and

stability (Daniel Han, 2024). I ran the training for 5 epochs, which was determined to be

sufficient for the model to converge on the task without overfitting, based on previous

experiments. These showed that the loss was not decreasing significantly after the 5th

epoch. Additionally, there was no increase in performance for these runs. I chose a batch

size of 1 as I wasn’t constrained by memory with the 8B parameters of the model. For the

optimizer I chose the AdamW optimizer in the 8-bit variant. AdamW is an extension of

the Adam optimizer that implements decoupled weight decay regularization, which can

help with reducing overfitting (Loshchilov & Hutter, 2017). I chose not to implement

any additional overfitting protection, as previous experiments showed no real danger of

that occurring with the 5 epochs chosen for this fine-tuning approach.

The fine-tuning was performed on an NVIDIA RTX A6000 GPU. This GPU has 48GB

of VRAM, which was sufficient for fine-tuning the 8B parameter model. The process

was implemented using PyTorch (Paszke et al., 2019) as the underlying framework,

with Unsloth providing optimizations specific to LLM fine-tuning. Fine-tuning took

approximately 20 minutes to complete the 5 epochs. During training the loss and

learning rate were monitored to avoid overfitting and ensure an efficient training.

In the end the LoRa adapter was merged with the base model to create the final fine-

tuned model with 16bit precision. This model was then evaluated on the test data

to determine its performance on the classification task. Results of this evaluation are

presented in the results section at 4.2.2.
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3.5 Text Adaptation through LLM Fine-Tuning

3.5 Text Adaptation through LLM Fine-Tuning

3.5.1 Dataset Generation

The existing dataset created in Subsection 3.4 contained only the original text samples

and their corresponding CEFR levels. To do the transfer task fine-tuning I needed to

create a new dataset that contained the text samples in multiple CEFR levels. As it was

not practical to manually create such a dataset, I decided to use synthetic data generation.

In the initial dataset generation step, this was not possible due to the inability to correctly

classify generated data. Despite this, with the fine-tuned model from 3.4, I was able to

use a different approach.

Classified text
sample

Classification
dataset

LLaMA3-70B
model

Classification

Classificator
model

Repeated for every generated variation

Uniqe classified
samples

Duplication
filter

Transfer
pairs with

classifications

Tuple
Generation

Repeated for database sample

Transfer
dataset

Sample
variations

Figure 3.6: Dataset Generation Process for Text Adaptation

Dataset Generation Process

I ended up using another foundation model to generate the synthetic data and verify

the correct classification using the fine-tuned model. The generation process began

by iterating trough all samples in the original dataset to serve as a "base" sample for

adaptation. For every base text, I instructed a base LLaMA3-70B model (See Prompt

3.7) to generate adapted versions of the base sample in all CEFR levels while preserving

the original content and meaning. This approach was designed to maintain consistency

in the content across different proficiency levels. The model was specifically directed

to produce all versions at once, a strategy that allowed it to consider the context of

lower-level transformations while generating higher-level versions. Ensuring a coherent

progression in language complexity across the CEFR levels.

After the generation, each newly generated sample underwent classification by the fine-

tuned model, ensuring the correct classification of the generated samples the quality of
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Erstelle bitte Varianten des folgenden Textes in allen CEFR Niveaus, außer
dem Originalniveau [ORIGINAL LEVEL]:

"[SAMPLE TEXT]"

Die Texte sollten den gleichen Inhalt haben, aber an das jeweilige CEFR
Niveau angepasst sein. Gebe die Texte als JSON Objekt mit CEFR-Leveln als
Keys zurück und antworte NUR mit dem Objekt, keine Begründungen, keine
Codeblöcke(“‘), keine Erklärungen dass du etwas nur versuchen kannst oder
ähnliches! Und stelle sicher, dass die Texte den gleichen Inhalt haben, sonst wirst
du gefeuert!

Prompt 3.7: Prompt for Broad Text Adaptation

the new dataset. The samples were then filtered to remove multiple transformed samples

in the same CEFR level. As a final step, all possible combinations of two-pair samples

were generated, including bidirectional transformations. This was done to ensure that the

model would be exposed to a diverse range of CEFR level transitions during training.

See Table 3.7 for an overview of the distribution of the generated samples.

Transfer Type Count Percentage

A1 ↔ C1 250 20.63%
A1 ↔ C2 236 19.47%
A2 ↔ C2 174 14.36%
A2 ↔ C1 160 13.20%
A1 ↔ B2 126 10.40%
A1 ↔ B1 66 5.45%
A2 ↔ B2 64 5.28%
B1 ↔ C1 54 4.46%
B1 ↔ C2 46 3.80%
B2 ↔ C2 14 1.16%
A2 ↔ B1 10 0.83%
B2 ↔ C1 8 0.66%
A1 ↔ A2 4 0.33%

Total entries 1212 100%
Note: Bidirectional transformations are combined for better readability. See Table 7.4 for a

detailed version.

Table 3.7: Transfer Distribution Overview
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3.5.2 Fine-Tuning Preparation // Dataset Preparation

After generating the synthetic dataset with multiple CEFR levels for each original sample,

I prepared the data for the fine-tuning process. This preparation involved several key

steps to ensure the integrity and balance of the training and test sets.

The first step in the preparation process was bidirectional grouping. The dataset contains

bidirectional transformations (e.g., A1->C1 and C1->A1) for each pair generated from

the original samples. To prevent potential contamination between training and test

sets, these bidirectional transformations were grouped together. By doing so, related

transformations are treated as a unit throughout the preparation and splitting process.

Following the bidirectional grouping, I used a level pair balancing strategy. The transfor-

mations were grouped by CEFR level pairs (e.g., A1->C1, B1->C2). To ensure a balanced

representation of all level pairs, I set minimum and maximum limits for the number of

samples in each pair. This helps to prevent bias towards certain level transformations

and ensures that the model is exposed to a diverse range of CEFR level transitions during

training.

With the dataset grouped and balanced, I split it into training and test sets. The split was

designed to maintain the integrity of the bidirectional groups by keeping those always

together. Approximately 80% of the samples were allocated to the training set, to be

used for fine-tuning the model. Importantly, this set includes at least one sample from

each CEFR level pair, ensuring complete coverage during training. The remaining 20%

of the samples were used as the test set.

For the transfer task, I designed a specific user prompt template to instruct the model to

adapt the text to a specific CEFR level. The prompt was crafted to be clear, concise and

explicit in its instructions to ensure the model’s adherence to the task.

Übersetze den folgenden deutschen Text auf das CEFR-Sprachniveau [TARGET
LEVEL], während du den ursprünglichen Inhalt und die Bedeutung so weit wie
möglich beibehältst:

[ORIGINAL TEXT]

Prompt 3.8: Prompt for Text Adaptation

Each sample consisting of an original text, transferred text, original level and target level

was then formatted into a format suitable for fine-tuning the LLaMA3 model. The format

was the same as in Section 3.5 and used the Prompt 3.8 for the first user message. See

Prompt 3.9 for an template of a formatted sample.
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3.5.3 Fine-Tuning Process

The fine-tuning was conducted using the same setup as in Section 3.4. Most hyperpa-

rameter were kept the same, with the two differences being that the model was only

trained for 3 epochs and on a different dataset. This was determined to be sufficient for

the model to adapt to the new task without overfitting as the dataset was rather small

due insufficient data sources. Completing the fine-tuning process took approximately

10 minutes. The final fine-tuned model was then evaluated on the test data using the

metrics defined in 3.2.1. Results of this evaluation are presented in the results section

4.2.2.

<|start_header_id|>system<|end_header_id|>Transformiere den
gegebenen deutschen Text auf das angegebene CEFR-Niveau, während du die
ursprüngliche Bedeutung beibehältst.<|eot_id|>
<|start_header_id|>user<|end_header_id|>[USER PROMPT]Ziel-CEFR-
Niveau: [TARGET NIVEAU]<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>[TRANSFERRED
TEXT]<|eot_id|>

Prompt 3.9: Formatted Prompt Sample for Fine-Tuning

3.5.4 Benchmark Design

The transformation benchmark was designed to evaluate the model’s ability to adapt

German texts between different CEFR levels while maintaining content integrity, utilizing

both the fine-tuned transfer model and the classification model.

Test dataset Transfered
text

Transfer
model

CEFR levelClassificator
model

Content retained?
Judge model

Transfer result

Repeated for every sample

Original text

Benchmark
result

Figure 3.10: Transfer Benchmark Design

The test dataset consists of samples containing original texts, their CEFR levels and target

levels for transformation. For each sample, the original text and target CEFR level are

fed into the transfer model using the adapted Prompt 3.8. The model then generates a

transformed version of the text, aiming to match the target level. This generated text is

then classified using the classification model. To assess content preservation, a separate

"judge" model evaluates the similarity between the original and transformed texts. For
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3.5 Text Adaptation through LLM Fine-Tuning

that I designed Prompt 3.11. I selected LLAMA-3-70B-Instruct (MetaAI, 2024) as the

judge model, as it showed promising results in previous experimental testing.

Original: [ORIGINAL TEXT]
Transferred: [TRANSFERRED TEXT]
Haben diese beiden Texte das gleiche Thema und selben Inhalt? Antworte nur
mit ’Ja’ oder ’Nein’.

Prompt 3.11: Content retention prompt

After all test samples were processed, the evaluation metrics are calculated. This includes

the transformations transfer accuracy, group transfer accuracy and content preservation

scores. All results of this benchmark are presented and evaluated in the following results

Section 4.3.
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This chapter presents the findings from my research into the use of LLMs for classifying

and transferring between German language proficiency levels. The results are organized

according to the two main tasks: CEFR classification and proficiency level transfer. I

first present the outcomes of the classification tasks using both prompt engineering

and fine-tuning approaches. This is then followed by the results of my text transfer

experiments. For each set of results, I provide quantitative metrics, visualizations and a

brief description of key findings.

4.1 Classification Dataset Analysis

Dataset Composition

The classification dataset consists of 1,445 text samples across all six CEFR levels

(A1,A2,B1,B2,C1,C2). The distribution of the samples across the different levels is

shown in Table 3.2. Notably, the distribution is not uniform across all levels - A2, B1 and

B2 have a higher representation (306, 331, 376 samples respectively) compared to A1,

C1 and C2 (179, 179, 196 samples respectively). This imbalance results primarily from

the scarce availability of data in the source datasets and current inability to generate

high-quality synthetic data for the higher CEFR levels.

Word Count Distribution

An analysis of the word count across different CEFR levels shows interesting patterns,

seen in Figure 4.1 and Table 4.1. The A1 level shows a rather high average word count

(594.98 words) in comparison to A2. This is due to the synthetic data generation process,

which aimed to create texts around the 600-word mark.

There also emerges a clear trend of increasing average word count for the higher CEFR

levels, with C2 having the highest average word count (2,832,37 words). This aligns

with exceptions, as higher CEFR levels are typically much more complex and thus tend
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Figure 4.1: Word Count Distribution Across CEFR Levels

to have longer texts. The word count variance is also significantly higher for the higher

CEFR levels, with C2 having a variance of 1,152.74 words.

Having analyzed the composition and characteristics of the dataset, I can now proceed

to examine how the models perform in classifying and transferring between CEFR levels.

The imbalanced distribution of samples across levels, especially the overrepresentation

of B1 and B2 levels may influence the model’s performance. In the following sections, I’ll

present the results of the classification and transfer tasks while keeping these dataset

characteristics in mind.

4.2 Classification Task Results

4.2.1 Prompt Engineering Approaches

Performance Comparison of Different Prompts

Figure 4.2 shows the performance comparison across three prompt generations for

classification of sample texts. A clear progression in both accuracy and group accuracy is

evident as I refined the prompt. The basic English prompt, my initial approach, showed

the lowest performance with 23.3% accuracy and 64.6% group accuracy. Switching to
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CEFR Level Average Minimum Maximum Median Standard
Deviation*

A1 594.98 44 1,198 662.00 299.93

A2 354.96 126 901 319.50 140.51

B1 731.24 183 1,692 644.00 315.86

B2 1,552.24 330 5,230 1,345.50 754.68

C1 2,558.80 967 6,910 2,382.50 1,152.74

C2 2,832.37 1,227 6,001 2,621.50 956.47

*Standard Deviation is calculated using the formula: σ =
√

1
n

∑n
i=1(xi − µ)2, where σ is the

standard deviation, n the number of samples, xi the individual word counts, and µ the mean
word count.

Table 4.1: Word Count Statistics Across CEFR Levels

German prompts showed significant improvement. The German Zero-Shot approach

increased accuracy to 33.3% and group accuracy to 75.3%, highlighting the importance

of language alignment between prompt and target texts. The German Few-Shot prompt

demonstrated the most substantial performance boost, achieving 59.3% accuracy and

94.0% group accuracy. This approach nearly doubled the accuracy of the German Zero-

Shot method and significantly increased group accuracy. These results confirm the

effectiveness of few-shot learning in this context. The high group accuracy of the German

Few-Shot prompt is also noteworthy, indicating strong performance in identifying correct

or adjacent CEFR levels.

Detailed Evaluation of Best Performing Prompt

The German Few-Shot prompt, which demonstrated the best performance in the previous

benchmarks, was further evaluated to provide a detailed analysis of its classification

capabilities. Table 7.3 shows the confusion matrix for the German Few-Shot prompt,

with a sample size of 25 texts per CEFR level. Notably, the majority of predictions align

along the diagonal of the matrix, indicating a strong tendency for correct classifications.

This alignment is a good indicator for the model’s performance, as it suggests that the

model is consistently identifying the correct CEFR level across different classes.

Further insights can be gained from the precision, recall and F1 scores for each CEFR

level, as presented in Table 4.2. The model demonstrates varying performance across

different levels:
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Figure 4.2: Accuracy Comparison Across Different Prompt Generations

Metrics
Class Precision Recall F1 Score
A1 0.8333 0.6000 0.6977
A2 0.6000 0.3600 0.4500
B1 0.4706 0.6400 0.5424
B2 0.5676 0.8400 0.6774
C1 0.5455 0.2400 0.3333
C2 0.6286 0.8800 0.7333

Table 4.2: Performance Metrics for CEFR Classification using German Few-Shot Prompt

1. A1 level shows the highest precision (83.33%) but moderate recall (60%), sug-

gesting the model has a more conservative approach to classifying texts at this

level.

2. B2 and C2 levels show balanced performance with high recall (84% and 88%

respectively) and moderate precision, resulting in the highest F1 scores among all

levels (67.74 and 73.33).

3. A2 and C1 levels present the most challenging classifications, with lower recall

scores (36% and 24% respectively), indicating difficulties in identifying these

intermediate levels between the extremes and central levels.

4. B1 level shows a balance between precision and recall, but both metrics are
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relatively low, suggesting consistent but moderate performance for this level.

These results highlight the model’s strengths in identifying extreme levels (A1 and C2)

and the B2 level, while also revealing challenges in distinguishing between adjacent

intermediate levels. The lower performance on A2 and C1 levels may be due to their

transitional nature, making them harder to distinguish from neighboring levels.

4.2.2 Fine-tuning Approach

Training Process

Epoch

Loss

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Training Loss

Figure 4.3: Loss during Training of the Classification Model

Figure 4.3 shows the training loss over four epochs for the fine-tuned model. The loss

decreases steadily over the epochs, indicating that the model is learning effectively. The

rate of decrease slows down in later epochs, suggesting that the model is approaching

convergence. Further testing showed that the model converged after this point, so no

further training was necessary.

Detailed Evaluation of Best Performing Fine-tuning Approach

The fine-tuned LLaMA-3-8B-Instruct model demonstrated significant improvements in

CEFR classification performance compared to the prompt-based approach (See Figure

7.3 for a comparison chart). Table 4.3 presents the confusion matrix for this model, with

a sample size of 25 texts per CEFR level.

The confusion matrix reveals a strong diagonal alignment, indicating improved accuracy

across all CEFR levels compared to the prompt-based approach. The model shows
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4 Results

A1 A2 B1 B2 C1 C2
A1 21 4 0 0 0 0
A2 3 18 4 0 0 0
B1 0 2 21 2 0 0
B2 0 0 4 16 5 0
C1 0 0 0 4 21 0
C2 0 0 0 0 7 18

Table 4.3: Confusion Matrix for Fine-tuned LLaMA-3-8B-Instruct Model

particularly strong performance in classifying A1, B1 and C1 levels, with 21 out of 25

samples correctly identified for each of these levels.

Table 4.4 provides a detailed breakdown of precision, recall and F1 scores for each CEFR

level.

Metrics
Class Precision Recall F1 Score
A1 0.8750 0.8400 0.8571
A2 0.7500 0.7200 0.7347
B1 0.7241 0.8400 0.7778
B2 0.7273 0.6400 0.6809
C1 0.6364 0.8400 0.7241
C2 1.0000 0.7200 0.8372

Table 4.4: Performance Metrics for CEFR Classification using Fine-tuned LLaMA-3-8B-Instruct
Model

Analysis of these metrics reveals several key insights:

1. A1 level demonstrates the highest overall performance, with balanced precision

(87.50%) and recall (84.00%), resulting in the highest F1 score (0.8571) among

all levels.

2. C2 level shows perfect precision (100%) but lower recall (72.00%), indicating that

the model is highly accurate when it predicts C2 but may sometimes misclassify C2

texts as lower levels.

3. B2 level presents the most challenging classification, with the lowest F1 score

(0.6809), suggesting difficulties in distinguishing it from adjacent levels.

4. A2, B1, and C1 levels show improved performance compared to the prompt-based

approach, with F1 scores above 0.72, indicating a more balanced and accurate

classification for these intermediate levels.
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4.3 Transfer Task Results

These results highlight the fine-tuned model’s improved ability to distinguish between

CEFR levels, especially for the extreme (A1 and C2) and intermediate (B1 and C1) levels.

The model shows a more balanced performance across all levels compared to the prompt-

based approach, with notable improvements in identifying A2 and C1 levels, which were

previously challenging. While the model still has some difficulties in classifying B2 texts,

the overall performance demonstrates significant progress in CEFR classification and

highlights the effectiveness of fine-tuning LLaMA models for this task.

4.3 Transfer Task Results

First, I have to determine a baseline for the transfer task. I will use an un-fine-tuned

LLaMA-3-8B-Instruct model as the baseline using the same Prompt 3.8. I designed for

the fine-tuned model. Then I will compare the performance of the fine-tuned model with

the baseline model.
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Figure 4.4: Performance Comparison of Baseline and Fine-tuned Models
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4 Results

Baseline Model Performance

The base model achieved a transfer accuracy of 18.1% and a group transfer accuracy of

35.2%. The content preservation rate was 86.7%, indicating that the model was able

to retain the content of the input text to a rather high degree. Meanwhile the transfer

accuracy and group accuracy were relatively low, suggesting that the model struggled to

accurately transfer text into the correct CEFR level.

Fine-tuned Model Performance

Figure 4.5 shows the training loss over three epochs for the transfer model. As can be

seen from the chart, the training loss decreases steadily over the epochs, indicating that

the model is learning effectively. As expected, the rate of decrease slows down in later

epochs, suggesting that the model is approaching convergence. Further testing showed

that the model converged after this point so no further training was necessary.
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Figure 4.5: Training Loss of the Fine-tuned Model

The fine-tuned model showed significant improvements over the baseline model across

several metrics. It achieved a transfer accuracy of 34.9%, nearly doubling the baseline

accuracy of 18.1%. The group transfer accuracy also increased from 35.2% to 74.5%.

However, the content preservation rate fell from 86.7% to 70.8%, indicating a trade-

off between accuracy and content retention. See Table 4.5 for the confusion matrix

for CEFR level transformations. The matrix reveals strong performance on beginner

levels (A1 and A2), with challenges in intermediate and complex levels (B1-C2). This is

also evident in the missing diagonal alignment, indicating that the model struggled to

accurately transfer texts to the correct CEFR level. When mistransfers occur, they mostly
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4.3 Transfer Task Results

Archived
Target A1 A2 B1 B2 C1 C2

A1 15 4 6 1 0 0
A2 2 12 6 0 1 0
B1 1 2 1 4 3 0
B2 0 0 7 3 0 2
C1 0 0 2 11 5 2
C2 0 0 3 8 4 1

Table 4.5: Confusion Matrix for CEFR Level Prediction

tend towards adjacent CEFR levels, aligning with the improved group accuracy metric.

Table 4.6 shows precision, recall, and F1 scores for each CEFR level. A1 and A2 levels

Metrics
Class Precision Recall F1 Score
A1 0.8333 0.5769 0.6818
A2 0.6667 0.5714 0.6154
B1 0.0400 0.0909 0.0556
B2 0.1111 0.2500 0.1538
C1 0.3846 0.2500 0.3030
C2 0.2000 0.0625 0.0952

Table 4.6: Performance Metrics for CEFR Classification using Fine-tuned LLaMA-3-8B-Instruct
Model

demonstrate high precision (0.8333 and 0.6667 respectively), while B1 and B2 levels

show low performance across all metrics. Transferring to C1 and C2 levels also present

challenges, but with higher F1 scores compared to B1 and B2 levels. The average F1

score of 0.3175 suggests that while the model has made significant improvements over

the baseline, there is still room for enhancement, especially in the transformation of

intermediate and complex CEFR levels.

In summary, the fine-tuned model showed significant improvements in transfer and group

accuracy compared to the baseline, especially for beginner levels (A1 and A2). However,

performance on intermediate and advanced levels (B1-C2) remained challenging, as

indicated by the lower precision, recall and F1 scores for these levels.
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5 Discussion

This chapter discusses the findings of this research on using LLMs for classifying and

transferring between language proficiency levels in German. I will analyze the effective-

ness of different approaches, examine the performance across CEFR levels, consider the

implications for language learning and assessment and address the limitations of the

methodology along with directions for future work.

5.1 Comparative Analysis of Classification and Transfer Methods

5.1.1 Classification Task

The results show a progression in classification accuracy as I moved from basic prompting

to fine-tuning:

• Basic English Prompt: 23.3% accuracy, 64.6% group accuracy

• German Zero-Shot Prompt: 33.3% accuracy, 75.3% group accuracy

• German Few-Shot Prompt: 59.3% accuracy, 94.1% group accuracy

• Fine-tuned LLaMA-3-8B-Instruct: 77.3% accuracy, 100% group accuracy

This progression highlights several key points:

Language Alignment

The significant jump from English to German prompts (23.3% to 33.3%) shows the

importance of aligning the prompt language with the target language. This suggests that

LLMs may leverage language-specific knowledge more effectively when instructions are

in the same language as the text being classified.
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Few-Shot Learning

The substantial improvement from zero-shot to few-shot prompting (33.3% to 59.3%)

demonstrates the power of providing examples. This aligns with findings from Brown

et al. (2020), who showed that few-shot learning can significantly boost performance on

various NLP tasks.

Fine-Tuning Superiority

The jump to 77.3% accuracy with fine-tuning showcases its effectiveness for specialized

tasks. This aligns with the general trend in NLP where task-specific fine-tuning often

outperforms prompting methods (Brown et al., 2020).

Test Set Limitations

Remarkably, the fine-tuned model achieved 100% group accuracy on the test set. While

this is an excellent result, it is important to note that this perfect group accuracy is specific

to the test set used. In larger or different datasets, there may be instances where the

model makes errors across non-adjacent levels. This near-perfect group accuracy suggests

that even when the model makes errors, it is usually not completely misclassifying the

proficiency level.

5.2 Performance Across CEFR Levels

The fine-tuned model’s performance varied across CEFR levels, as seen in Table 5.1.

Several patterns emerge from this data:

Strong Performance at Extremes

The model is best at identifying A1 and C2 levels, which may be due to more distinctive

linguistic features at these levels. For instance, A1 texts likely contain very basic vocabu-

lary and simple sentence structures, while C2 texts may showcase complex language use

that’s easier to distinguish.
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5.2 Performance Across CEFR Levels

CEFR Level F1 Score

A1 0.8571

A2 0.7347

B1 0.7778

B2 0.6809

C1 0.7241

C2 0.8372

Weighted 0.7686

Table 5.1: F1 Scores Across CEFR Levels

Challenges with Intermediate Levels

The model struggles most with B2, which sits at the center of the CEFR scale. This

difficulty can be attributed to several factors. Firstly, B2 represents a transitional stage

where learners are moving from intermediate to advanced proficiency, making it harder

to differentiate from adjacent levels. The features that differentiate B2 from B1 and C1

may be more subtle and context-dependent. Additionally, B2 level texts often exhibit

more variability in terms of complexity compared to other levels. Some B2 texts might

be closer to B1 in certain aspects, while others might imitate C1 in others, leading to

potential misclassifications.

Implications of Misclassifications

The confusion matrix (4.3) and a group accuracy score of 100% shows that most (all

cases in the test data split) misclassifications occur between adjacent levels. This is

somewhat reassuring, as it suggests that even when the model makes errors, it’s usually

not drastically misjudging the proficiency level. This comes down to a margin of error that

is the same for human experts as there is no clear cut-off between levels and decisions

are often subjective. The varying performance across levels has important implications

for practical applications:

• For placement tests or broad categorization, the model could be highly effective,

especially in distinguishing between beginner (A1,A2), intermediate (B1,B2) and

advanced learners (C1,C2).

• For more precise assessment, especially around the B2 level, additional features,

data or methods may be needed to improve accuracy.
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5.2.1 Transfer Task

The transfer task results demonstrate the challenges and future potential of adapting text

between CEFR levels:

• Baseline LLaMA-3-8B-Instruct model:

– Transfer accuracy: 18.1%

– Group transfer accuracy: 35.2%

– Content preservation: 86.7%

• Fine-tuned LLaMA-3-8B-Instruct model:

– Transfer accuracy: 34.9%

– Group transfer accuracy: 74.5%

– Content preservation: 70.8%

These results highlight several important points:

Firstly, the fine-tuned model shows significant improvement in transfer accuracy (from

18.1% to 34.9%) and group transfer accuracy (from 35.2% to 74.5%) compared to

the baseline model. This demonstrates the effectiveness of fine-tuning for the transfer

task. Nevertheless, there also emerges a trade-off between transfer accuracy and content

preservation. While the fine-tuned model improves accuracy, there’s a decrease in content

preservation (from 86.7% to 70.8%). This could stem from the higher CEFR levels being

more complex and the model filling in more information for transformations from a lower

to a higher CEFR level to accommodate for that. Leading to the judge model thinking

that the content is not preserved, explaining the decrease in content preservation for the

fine-tuned model.

While the fine-tuning led to a substantial increase in transfer accuracy, the overall

transfer accuracy is still rather low. Indicating that the task of transferring text between

CEFR levels while preserving content is more challenging than classification alone. This

complexity arises from the need to simultaneously modify linguistic features to match the

target proficiency level while retaining the essential meaning and context of the original

text.

More importantly, the transfer dataset was rather small and unbalanced as seen in

Table 3.7. Imbalances like this can lead to underfitting of the model, as it may not

have seen enough examples to learn the necessary transformations. Especially around
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5.3 Contextualizing the Findings

transformations of adjacent CEFR levels, the model may have struggled to learn the

necessary changes. Despite these challenges, the model fared rather well, showcasing

the potential of LLMs for text adaptation tasks.

5.3 Contextualizing the Findings

To contextualize my findings, I compare them to the work of Szuügyi et al. (2019),

Vajjala & Rama (2018) and Caines & Buttery (2020) who conducted a similar study on

German CEFR classification.

Comparison to Szuügyi et al. (2019)

Their study classified texts into three broad levels (A, B, and C), achieving 82% accuracy,

while this thesis employs a more granular six-level CEFR classification (A1-C2), achieving

77.3% accuracy. Notably, my group accuracy is very similar to their accuracy metric and

surpasses their results with 100% of my test set, suggesting that LLMs can classify CEFR

levels more accurately, even when making finer distinctions.

Methodologically, our approaches differ significantly. Szuügyi et al. used a Linear SVM

classifier with manually engineered features, while I utilized a fine-tuned LLM (LLaMA-

3-8B-Instruct). My LLM-based approach demonstrates the ability to implicitly learn

and utilize complex linguistic features without manual feature engineering, potentially

capturing more nuanced language characteristics.

Comparison to Vajjala & Rama (2018) and Caines & Buttery (2020)

Caines & Buttery (2020) builds upon the work of Vajjala & Rama (2018), applying

similar approaches to classify German texts into CEFR levels. While both studies focus

on multilingual proficiency classification, Caines & Buttery (2020) expands the analysis

to additional languages, refining feature-based methods and achieving slightly better

results compared to Vajjala & Rama (2018). Given the improvements in the second paper,

I will focus primarily on the results of Caines & Buttery (2020).

Both studies explore two key approaches: feature-based methods and neural network

models. The feature-based models in Vajjala & Rama (2018) and Caines & Buttery

(2020) utilize linguistic and syntactic features such as word n-grams, part-of-speech

(POS) n-grams and dependency triples, alongside domain-specific features like document
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length and lexical richness. These feature-based approaches achieved higher weighted F1

scores for German CEFR classification, outperforming their neural network counterparts,

especially in Caines & Buttery (2020), where the best feature-based model achieved a

weighted F1 score of 0.702.

In comparison, the fine-tuned classifier LLM achieved a weighted F1 score of 0.7656.

This performance surpasses the results from both Vajjala & Rama (2018) and Caines

& Buttery (2020). The LLM effectively generalized across various linguistic features

without requiring explicit engineering.

5.4 Limitations and Future Work

While this thesis demonstrates great potential in using LLMs for German CEFR classifica-

tion and transfer, several limitations should be acknowledged:

5.4.1 Dataset Limitations

With only about 1,500 samples and an uneven distribution across CEFR levels, especially

the overrepresentation of B1 and B2 levels (See Section 4.1), the classification dataset

is relatively small and may have introduced biases in the model’s performance. While

it was tried to avoid this by undersampling the B1 and B2 levels, it should still be kept

in mind. With more data in the other CEFR levels, the model could potentially perform

even better.

The transfer task dataset is even smaller, due to being generated from the classification

dataset. This could have led to underfitting of the model, as it may not have seen enough

examples to learn the necessary transformations. Future work should focus on collecting

a larger, more balanced dataset for the transfer task.

Additionally, there could be a bias based on the sample texts content, not language

proficiency. For example, if the A1 texts are all about the same (basic) topic, the model

could learn to associate that topic with A1 proficiency, which would not generalize well

to other texts. Avoiding this problem is rather hard as most training data in the lower

CEFR levels is likely to be written by learners who are not yet proficient enough to write

about a wide range of topics.
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5.4.2 Model Limitations

The models also have limitations that should be considered. Firstly, the models are only

fine-tuned on German texts and may not generalize well to other languages. This should

not be a problem as the goal of this thesis was to work with German texts, but it should

be kept in mind when trying to apply the models to other languages. Secondly, the

models are LLMs and LLMs are known to be black boxes, meaning that it is hard to

interpret why the model makes a certain decision.

Another trait of this architecture in combination with the binary classification is that

the classification model only outputs a single CEFR level. This is not ideal as language

proficiency is a continuous scale and the CEFR levels have somewhat arbitrary cut-offs.

5.4.3 Transfer Task Challenges

The lower performance on the transfer task compared to classification highlights the

need for more advanced techniques in text adaptation. The trade-off between transfer

accuracy and content preservation needs further investigation. Future work could focus

on developing metrics and techniques to better balance these competing objectives.

5.4.4 Future Work

Future work could address these limitations and expand on the current findings. I have

identified several key areas for improvement and expansion to further advance research

in this field:

Firstly, the dataset used for training and evaluation should be massively expanded. This

expanded dataset should include a larger and more balanced collection of genuine learner

texts spanning uniformly across all CEFR levels. To enhance the model’s generalizability,

it is crucial to incorporate texts from a diverse range of topics and genres. Additionally,

collecting the same text written at multiple CEFR levels, ideally produced by experts in

each level, would provide a clear ground truth for comparison and analysis, removing

the need for synthetic data.

Secondly, the CEFR classification can be improved to better reflect the nuanced nature

of language classification. One approach would be to extend the model to provide

continuous scores across CEFR levels, rather than discrete classifications. This could

potentially be achieved by extracting the logits from the model and using them as a

continuous score, although this method may present challenges due to the multi-token
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nature of CEFR level labels. Additionally, training the model to output a confidence

score alongside each prediction could potentially provide insight into the reliability the

classifications.

Lastly, to determine the effectiveness and usability of the model, it should be implemented

in real-world language learning environments. Conducting studies in these settings would

allow for assessment of the model’s impact on learner progress and overall educational

outcomes. Moreover, these studies would provide real-world based feedback on the

model’s ease of use for teachers and researchers, ensuring that it can be seamlessly

integrated into existing workflows.
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In conclusion, this thesis has demonstrated the significant potential of LLMs in classifying

and transferring between German language proficiency levels. Through exploration

and application of prompt engineering and fine-tuning techniques, I have shown that

LLMs can effectively tackle the complex task of CEFR classification, achieving results that

surpass previous approaches.

The fine-tuned LLaMA-3-8B-Instruct model achieved an impressive 77.3% accuracy across

all six CEFR levels, with a 100% group accuracy on the test set. This performance shows

the model’s ability to make small distinctions between proficiency levels while avoiding

drastic misclassifications. The transfer task, while more challenging, also showed promis-

ing results, with the fine-tuned model nearly doubling the transfer accuracy to 34.9%

compared to the baseline. But here is still room for improvement for further research.

Comparing my findings to previous studies reveals that the LLM-based approach not only

matches but exceeds the performance of traditional machine learning methods. This is

especially interesting given the finer distinctions between six CEFR levels in this study.

However, limitations such as the relatively small and imbalanced dataset suggest room

for improvement. Future work could focus on expanding the dataset with authentic

learner texts, developing more sophisticated evaluation metrics for the transfer task,

exploring continuous scoring within CEFR levels, and investigating the application of

these models in real-world language learning environments.

In summary, this thesis has demonstrated the effectiveness of LLMs, especially in Ger-

man CEFR classification tasks. There is great potential for further research, especially

regarding the transfer task.
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7 Appendix

Predicted
Actual A1 A2 B1 B2 C1 C2

A1 3 1 21 0 0 0
A2 0 0 25 0 0 0
B1 0 0 24 1 0 0
B2 0 0 17 8 0 0
C1 0 0 7 18 0 0
C2 0 0 0 25 0 0

Table 7.1: Confusion Matrix for the First English Prompt, sample size of 25 per class

Predicted
Actual A1 A2 B1 B2 C1 C2

A1 5 7 6 0 0 0
A2 0 4 14 0 0 0
B1 0 1 23 1 0 0
B2 0 0 21 4 0 0
C1 0 0 6 19 0 0
C2 0 0 6 19 0 0

Table 7.2: Confusion Matrix for zero-shot German Prompt, sample size of 25 per class

Predicted
Actual A1 A2 B1 B2 C1 C2

A1 15 5 5 0 0 0
A2 3 9 13 0 0 0
B1 0 1 16 7 1 0
B2 0 0 0 21 2 2
C1 0 0 0 8 6 11
C2 0 0 0 1 2 22

Table 7.3: Confusion Matrix for few-shot German Prompt, sample size of 25 per class
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Klassifiziere die Sprachkenntnisse des bereitgestellten deutschen Textes gemäß dem
Gemeinsamen Europäischen Referenzrahmen für Sprachen (GER/CEFR). Antworte NUR mit
der entsprechenden Stufe: A1, A2, B1, B2, C1 oder C2, NICHT MEHR. Gebe auch *keine*
Begründung!
Hier sind jeweils Beispiele:

A1: Lieber Jens, Ich Glückwünsche dich ist Vater geworden. Wie es deine Frau und
deine Babys? Wie heißt des Babys? Brauchst du etwas hilfe? Könntest du bitte mich anrufen?
Herzlichen Grüßen Maria Meier
A2: Liebe Dana, vielen Dank für ein Brief. Ich habe dein Brief gelesen, war toll. Die Prüfung habe
ich bestanden. sehr toll. Danach bin ich nach Luxemburg gefahren. Ich besuche meine Schwester.
Meine Schwester zeit einem jahre in Luxemburg gelieb. Die Stadt ist so interessant mich. war
schön. Ich bleibe noch ein woche bei meine Schwester. Ich wünsche eine uhr aus Istanbul. Kannst
du mir mitbringen. Vielleicht treffen wir uns wenn du nach Trier zurück kommen. Ich vermisse
dich. viele Grüße Katharina
B1: Liebe meine Freundin, Ich hoffe es geht dir gut und Ich Wünsche alles gute. Ich habe ein
Hund aber Ich bin Für ein paar Tag nicht zu Hause Kann Ich nicht nehme mit, Kamm er ein paar
Tage bei dir Bleiben, von 10 bis 14 Januar nur vier Tage, weil Ich nach marokko Fahre. Schön
Grüße dein Stefan
B2: Hallo zusammen Ich bin Maria, komme aus Spanien und wohne in Deutschland seit funfzehn
Jahen. Ich wollte hiermit meine Meinung zum Thema „Deutsch Lernen" äussern. Warum Deutsch
als Fremdsprache lernen auswählen, wenn es andere Sprache gibt, die nützlicher. seien konnten.
Es war für mich auch eine schwierig Entscheidung. Selbst als Spanierin hatte ich schon eine
Sprache beherrscht, die weltweit gesprochen war. Dann kam die Frage: Warum Deutsch und nicht
Englisch? Nach einigen Untersuchungen war das denn klar. Deutschland ist der Land Europas,
wo es mehr Industrie gibt, vor allem Chemieindustrie, aber auch Maschinenbauindustrie und
Informationindustrie sind hier sehr wichtig. Für mich als Chemie Studentin war das damals ein
entscheidendes Faktor. Auf der Welt gesehen ist auch Deutschland der Land, der mehr exportiert.
Das heisst, auch wenn man in einem deutschsprachigen Land nicht wohnt, lohnt es sich, Deutsch
zu können. Dies bezüglich, wenn man für die EU arbeiten will, ist Deutsch eine der offiziellen
europäischen Sprachen. Nicht nur die Arbeitsmöglichkeiten entweder in Deutschland oder mit
deutschen Firmen sind ein Grund Deutsch zu lernen sondern auch die Kultur und alle Chancen,
die diese anbietet. Deutsch wird in drei Ländern in Europa gesprochen: Deutschland, Österreich
und die Schweiz, und sogar in einem Teil Brasiliens, deswegen ist es auch praktisch Deutsch zu
sprechen, wenn man an alle Reisen denkt, die man machen kann. Also von mir ausgesehen würde
ich das Deutsch als Fremdsprache lernen empfehlen, da es vieles anbietet. Man muss nicht nur
darauf achten, wie viele Menschen die Sprache sprechen, sondern auch welche positive Vorteile
das Sprache Sprechen bringt.
C1: Meiner Meinung nach ist dass einerseits man sich an der Kultur des Gastlandes orientieren
sollte, anderseits ist es sinnvoll, auch im Ausland die Traditionen seines Heimatlandes fortzusetzen.
Wenn man in Ausland einwandert, ist es schwer zuerst wegen Fremdsprache, Kultur, Mentalitet in
Gesellschaft sich zu integrieren. Aber ich denke, man soll diese Schweirigkeiten durch Lernen
von Kultur des Gastlandes kämpfen. Besonders durch Sprachlernen, weil die Sprache eine
wichtige Teil von jeder Kultur ist. Gleichzeitig soll man die Traditionen seines Heimatlandes
nicht vergessen. Es ist besonders sinnvoll, wenn es kleine Diaspora im Ausland gibt, deshalb hat
man eine Möglichkeit seine Kultur zu entwickeln und verbreiten. Zum Beispiel, in Deutschland
gibt es viele Ausländer aus Türkei und ex-USSR, die gut Deutsch sprechen, Deutsche Literatur
lesen, Deutsche Freunden haben und das stört ihnen nicht die Taditionen ihres Heimatlandes
fortzusetzen. Also, möchte ich zum Shcluss sagen, dass es keine genau Antwort auf diese Frage
gibt, trotzdem glaube ich, dass man eine Balance finden soll.ddd
C2: Die eigentlichen Hauptsprachen sind English, Frazösisch und Spanisch. Jedoch finde ich es
sehr wichtig und angebracht auch Deutsch zu studieren. Es gibt einige Bücher, Gedichte und
Stücke die zwar in anderen Sprachen übersetzt werden, jedoch ist der deutscher Stil von grosser
Bedeutung. Falls man solche wundervolle Kunstwerke in einer anderen Sprache liest, wird es
einen ganz anderen Eindruck auf den Lesen haben. Auch in anderen Bereichen ist Deutsch
notwendig und manchmal gar unerlässlich. Wenn man zum Beispiel Deutschland oder Österreich
wohnt ist das Beherrschen von der deutschen Sprache ein Muss. Wie soll man ohne vollständige
Deutschkenntnisse eine gut bezahlte Arbeit finden? Wie soll man sich auf der Strasse oder in
einem Geschäft richtig verständigen? Auf solche Problem gibt es nur eine Lösung, nämlich, man
muss das Deutsch beherrschen und bequem mit der Sprache umgehen können. Für beide Punkte
finde ich es sehr sinnvoll sich mit Deutschlernen zu befassen. Jedoch möchte ich noch klarstellen,
dass man sich allererst mit den drei, schon oben erwähnten Hauptsprachen, beschäftigen soll.
Alles in allem finde ich, dass wenn man Zeit, Geld und Lust für die deutsche Sprache findet, ist es
sehr Lobenswert sich darin zu vertiefen.

Prompt 7.1: Full German Few-Shot Prompt
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Transfer
Type

Count Percentage

A1 → C1 125 10.31%
C1 → A1 125 10.31%
A1 → C2 118 9.74%
C2 → A1 118 9.74%
A2 → C2 87 7.18%
C2 → A2 87 7.18%
A2 → C1 80 6.60%
C1 → A2 80 6.60%
A1 → B2 63 5.20%
B2 → A1 63 5.20%
A1 → B1 33 2.72%
B1 → A1 33 2.72%
A2 → B2 32 2.64%
B2 → A2 32 2.64%
B1 → C1 27 2.23%
C1 → B1 27 2.23%
B1 → C2 23 1.90%
C2 → B1 23 1.90%
B2 → C2 7 0.58%
C2 → B2 7 0.58%
A2 → B1 5 0.41%
B1 → A2 5 0.41%
B2 → C1 4 0.33%
C1 → B2 4 0.33%
A1 → A2 2 0.17%
A2 → A1 2 0.17%

Total
entries

1212 100%

Table 7.4: Detailed Transfer Distribution Overview
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